A major factor to consider when designing a part for manufacture with MIM is tooling design. MIM tooling requires very specific design features; these include parting lines, gates, ejector pin marks, and cam actions.

Parting Lines: Every MIM part will have a witness line from where the two halves of the mold come together to form the cavity. However, creative design can help to hide the parting line. Stepping the parting line down the edge of a feature will make the parting line less apparent.

Gating: The gate is where the MIM feedstock is injected into the cavity. There are four most common gate types: tab, tunnel, jump and drop. Each gate type leaves a small vestige, so placement is complicated. You also want to gate into an area of the part with the largest cross section, so you fill the part from thick to thin. On cylindrical parts, filling as close to the center axis as possible will help prevent sintering distortion.

Ejector Pins: Ejector pins serve to remove the part from the tool cavity. However, ejector pins leave witness marks on the part. Consider designing the part in a way to place these marks in an area that is unseen on the part when it is assembled.

Cam Actions: Cam actions allow undercuts to be formed in the part, without the need for secondary operations. When designing a part with undercuts, keep in mind what direction a cam will have to move in to form the undercut. Design becomes more complicated when multiple cam actions are needed, because each one takes up a lot of space within the tool itself.

Latest Stories

Visualizza tutto

Custom Sintered Metal Parts from XY-GLOBAL

Continua a leggere

Sintered Metal Parts Produced by XY-GLOBAL

Continua a leggere

Titanium Powder Metallurgy: The Definitive Guide to High-Performance Manufacturing

Continua a leggere

Precision Metal Powder Pressing for the Medical Industry: ISO 13485 Certified Excellence for Bio-compatible Parts

Continua a leggere

Cold Isostatic Pressing (CIP) in Action: From Aerospace Components to Medical Implants

Continua a leggere

Medical Ceramics vs. Metals: Why Bioceramics are the New Gold Standard for Implants

Continua a leggere

Custom Micro Machined Parts by Micro Machining Services

Continua a leggere

Precision Sintered Metal Parts: The Ultimate Guide to Engineering, Quality Control, and Client Partnership

Continua a leggere

Custom Carbon Fiber Injection Molded Components with High Strength and Durability

Continua a leggere

The Ultimate Guide to Powder Metal Gears: Engineering Excellence Through Production Consistency

Continua a leggere

Metal Injection Molding vs Die Casting: Comprehensive Comparison for Business Decision-Making

Continua a leggere

Why Medical Grade Ceramic Matters: Technical Ceramics, Precision Machining, and Injection Molding Explained

Continua a leggere